

Strain Gauge Interface

Single Channel Strain Gauge Interface - SDI-12 Device

Part No NP-STRAIN-1

Introduction

Last Updated: Nov 2014

The NP-STRAIN-1 is an intelligent general purpose strain gauge interface suitable for direct connection to strain gauges and load cells. The device connects to any suitable logger supports SDI-12 digital communications and is fully integrated into the free Keynes Controls Q-LOG data display and recording software.

The product is available as a stand-alone PCB for inclusion into 3rd party products or as a complete sensor complete with an enclosure.

The **NP-STRAIN-1** is User Programmable and can supply results in both raw or engineering unit format. A precision temperature sensor input is supplied for applications where compensation is required.

The sensor monitors the bridge excitation during the measurement and compensates automatically for any excitation variation during the data conversion process.

OEM Applications

The NP-Strain-1 PCB can be supplied customised for third party applications. The PCB can be changed to allow for screw hole PCB mounting, choice of termination and pre-set configurations.

Further Information

The **NP-STRAIN-1** strain can be used to provide force on a strain gauge based load cell using the following formula in Q-Log.

$$F = \frac{(e_o)(F_{fs})}{\left(\frac{mV}{V}\right)(E_x)}$$

F units Newtons

+V Sense

0V Bridge Exci

Installation & Operation

The installation and operation of the NP-Strain-1 sensor is straight forward.

Bridge Type

Connect the strain gauges and bridge completion Strain Gauge Port Pin-out resistors to the sensor input port, see Figures 7, 8 View looking into port through 10 for sample wiring options.

Network Connection

Connect the SDI-12 digital port on the sensor to the SDI-12 port on the USB-SDI12 media converter or SDI-12 port on a suitable data logger.

Default ID = 0 unless specified on the sensor.

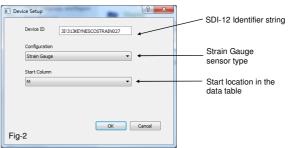
Physical Installation

Mount the NP-Strain-1 interface as close to the gauge/load cell is is **Network Connection Diagram** practical for minimum noise and optimum results

Wiring Diagram

The image opposite shows the wiring schematic for connection the NP-Strain-1 onto a SDI-12 network.

Features

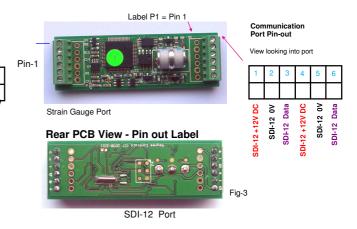

Support for 120 to 1 K Ohm Gauges Load Cells External bridge completion Precision Temperature Sensor User Programmable Scaling Factors SDI-12 Digital Communications Extended SDI-12 Address Support: 0-9, a-z 16 Bit Precision ADC

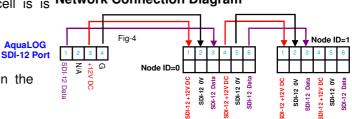
Low Power - minimised self heating effect Engineering and raw data values Fully Integrated into Q-Log Software Firmware upgrade facility

The image opposite shows both the NP-STRAIN-1 circuit board and the waterproof housing.

The sensor has been designed for operation in harsh environments and still has the ability to be easily installed in the field.

No special installation tools or plugs are required simply since all signal and sensor cables simply push into the cable clamps mounted on the front and back of the unit.




Q-LOG Device Setup Window

Download a copy of Q-Log

Further information at:

http://www.aquabat.net/QLOGFree/qlogv2.html

Technical Specifications

Specifications are accurate at the time of publishing but can be changed without notice.

but our be changed without notice.	
Power Supply	10 -18 V
Current	2 mA at acquisition 10 uA standby
Input Range	+/- 8mV Other ranges on reque
SDI-12 Port	1 x Port Version 1.03
Max update rate	1 sec
Cable Clamp Size	1 mm diameter
Bridge Excitation	3.3 V DC
Raw Value	Raw data mV/V
Engineering Value	micro-strain, mV/\ User defined
Range	User defined, depen on sensor installed
Temp Sensor	Thermistor
Thermistor Type	3 K EC95 F type mater 10K 3A1 Betatherm
Calibration	Steinhart-Hart Built Pre-defined

Accuracy

Range **Units**

RMS Noise (Typical values)

PCB Dimension Lenath

Width Max depth **Cable Entry Number Channels Gauge Resistance Gauge Factor**

ADC Statistics Strain **Temp**

0MM1!

Command

aM!

aD0

aD1!

al!

aXUTu!

aXCn,xxxx

equest

V/V mV/V

epends talled

material herm art

Set at manufacture 0.05 Deg -8 to 25 Deg C -30 to + 60 Deg

Deg C / Deg F

less than 1 uV/V less than 0.01 Deg C

60 mm 19.7 mm 11.2 mm 1 m Screw terminal

120 - 1K Ohm User Defined 16 Bit

Max. Min Max, Min

Example AquaLOG SDI-12 Commands

[D] 0M! 0D0! - get data ID=0 returns 2 values

Response

a+0 123+25 5

a0tt2

an,xxxx

strain, temp [F] 0M! 0D1!

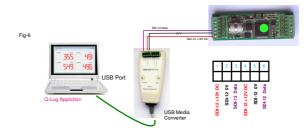
get Max Strain, temp values returns 4 values into cells F .. I reset max strain for sensor ID=0

a+0.1299+0.1201+25.9+25.0

a13KEYNESCOPRESR001

Bridge Zero Offset Correction

The NP-Strain-1 sensor does not zero correct the bridge and assumes the User will correct the error in post processing of the


Physical Dimensions

Temperature coefficient of Gage Factor (TCGF)

This is the change of sensitivity of the device to strain with change in temperature. This can be compensated for in the calibration equations but it is recommended to be post process corrected in any data analysis.

PC / Laptop Data Acquisition Solutions

The image below shows a simple PC based strain gauge data acquisition application created using the NP-Strain interface cards and the Keynes Control USB media converter.

Strain Equations

The following equations are used by the NP-Strain-1 card to determine the measured strain.

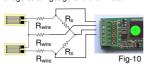
$$\varepsilon = \frac{4(e_o)}{(GF) \, 3.3}$$
 ¼ bridge strain gage

$$\varepsilon = \frac{\mathbf{2}(e_o)}{(GF)3.3}$$
 ½ bridge strain gage

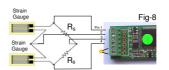

$$\varepsilon = \frac{(e_o)}{(GF)3.3}$$
 Full bridge strain gage

Default Configuration

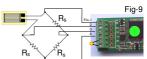
The NP-Strain-1 interface uses the 3 K Ohm thermistor by default. The following command can be used to test the NP-Strain-1 sensor.


OM! Start measurement: ODOL

- 1 sec response 2 values returns 012 returns 0+strain+temp



Bridge Circuit Options The images below show how the different bridge


Example circuit shows a full (N=4) bridge strain gauge and thermisto

Example circuit shows a half bridge strain gauge (N=2) with 3 wire interface - reduces cable length effects

Example circuit shows a half (N=2) bridge strain gauge and thermistor

Example circuit shows a quarter (N=1) bridge strain gauge and thermisto

Strain calculated using 1, 2 or 4 active arms

$$E = \frac{4(e_o)}{(N)(GF)E_x}$$
 N = 4 for full bridge 2 for half bridge 1 for quarter bridge

E_x = Bridge Excitation = 3.3 V = strain = Output Voltage

= Number of effective arms = Gage Factor

Example Calibration Commands

aXC0.offset! aXC1.scale!

Example - Set scale factor for device with ID = 3 to 4.5 and offset = 2.78

SDI-12 Commands are

3XC1.4.35! 3XC0.2.78!

The output from the device is calculated by Output (Eng Units) = Scale. Vin - Offset

Part Numbers

NP-Strain-1-SDI-12 Strain gauge interface - SDI12 digital network option

Strain gauge interface - RS-485 NP-Strain-1-RS485 digital network option

Copyright Keynes Controls © 2014-2015

No part of this document can be recreated without ermission of Keynes Controls Ltd

This document is accurate at the time of print, Keynes Controls Withold the right to make changes at any time without notification

Supported SDI-12 Commands

Description
2 values in time tt given by stats
Strain and temperature values
Statistical values max S, min S, max T, Min T
Identification string
Temperature units $u=0 \rightarrow Celsius$, $u=1 \rightarrow Fahrenheit$ with read back
Calibration data (No temp compensation - default) $ E = [0] + [1]^*s $ with read back. s is in mV/V $ E \text{ is in micro-strain} $
Ensemble Averaing Command t → filter type

xxxx → interval between beasurment * 200ms

 $1 \rightarrow 10 \text{ K Ohm}$ Model 10K3A1 Betatherm

aXFt,nn,xxxx! at,nn,xxxx aXTHMT(0..1) a + 0/1

(should be 0 - mean only) nn → number of filtered values 1 to 12 Thermistor type selection

0 → default = 3.3 K Material type F - Model EC95